特集: MAZDA MX-30 Rotary-EV

10

新型ロータリーエンジン 8C 型の燃焼技術

Combustion Technology for 8C New Rotary Engine

森本	博貴 *1	宮本	亨 ^{*2}	中嶋	勝哉*3	菊地	拓哉 *4
Hiroki Morimoto		Toru Miyamoto		Katsuya Nakajima		Takuya Kikuchi	
田中	清喬 *5	砂流	雄剛*6	野本	哲也 * ⁷	若林	良努 ^{*8}
Kiyotaka Tanaka		Yugou Sunagare		Tetsuya Nomoto		Yoshito Wakabayashi	

要 約

マツダは,約11年ぶりとなる新型ロータリーエンジン8C型を開発した。小型高出力な本ユニットをMX-30 にシリーズ式プラグインハイブリッドの発電用として搭載することで,地球温暖化抑制という社会的課題への マルチソリューション戦略の1つを体現する。8C型は,理想的な燃焼を追求するために前モデル13B型から 圧縮比を高め,燃料供給を直噴化及びCooled EGRシステムを採用,更に燃焼室形状を変更した。また,発電 機専用ユニットとして排気量を最適化した。その結果,熱効率の大幅な改善と全域λ(空気過剰率)=1運転を 実現したことで13B型からユニット燃費が最大25%向上し,最新のエミッション規制である欧州Euro6d規制 にも適合した。

Abstract

Mazda has developed an 8C new rotary engine for the first time in about 11 years. The MX-30 embodies one of our multi-solution strategies for the social issue of curbing global warming, with use of this small, high-output engine as a generator for a series plug-in hybrid. In the 8C, ideal combustion was pursued with a higher compression ratio than a 13B previous model, direct fuel injection, cooled EGR system, and a change in the shape of combustion chamber. In addition, the displacement was optimized as a generator-dedicated unit. As a result, the 8C has achieved a significant improvement in thermal efficiency and λ (excess air ratio)=1 operation over the entire range, improving fuel consumption of the unit by up to 25% compared to the 13B. It also complies with Europe's Euro6d regulations, the latest emissions regulations.

Key words : Heat engine, Rotary engine/Rotary combustion engine, Performance/Fuel economy/Efficiency

1. はじめに

BEV 普及に向けた移行段階にある昨今,地域特性と環 境ニーズに適した電動化技術が求められる。そこで,マ ツダが改めて着目したのがマツダのアイデンティティー であるロータリーエンジンをシリーズ式プラグインハイ ブリッド用の発電機として活用することである。ロータ リーエンジンは同排気量のレシプロエンジンよりも小型 高出力であり,エンジンからモータージェネレーターま でを横一列に配置が可能で,MX-30のエンジンルームに 収まる (Fig. 1)。これまでロータリーエンジンは,その 構造から燃費やエミッションに不利だと考えられてきた が,徹底的な性能改善と電駆ユニットとの協調により, 飛躍的な進化をした。本稿では,約11年ぶりの復活と

*1~7 エンジン性能開発部 Engine Performance Development Dept. なる新型ロータリーエンジン 8C 型(以下,8C型)の燃 焼技術について紹介する。

2.8C型ロータリーエンジンの技術目標

2.1 熱効率の改善

8C型では Fig. 2 のロードマップに示すように,エンジン効率に影響する 7 つの制御因子に対して前モデル 13Bから改善に取り組んだ。

Fig. 2 Roadmap to Goal of Rotary Engine

7 つの制御因子のうち,壁面への熱伝達(冷却損失) はその割合が大きく,これはロータリーエンジンがもつ 2 つの構造的な特徴に起因している。1 つは燃焼室の表 面積の差で,Fig.3 に示すように扁平な燃焼室形状のロー タリーエンジンはレシプロエンジンよりも同じ燃焼ガス に対して冷える面積が約2倍(上死点)になる。もう1 つはエンジン回転数と時間の関係で,温度が上昇する圧 縮や膨張の行程時間が同じエンジン回転数でもレシプロ エンジンの約1.5倍長く,冷やされる時間が長い。すな わち,表面積,時間ともにロータリーエンジンでは冷え やすく,壁面熱伝達が大きい(冷却損失が生じやすい)。

8C 型では,これらの課題に対してマツダのレシプロ エンジンで培った燃焼技術も融合させ,理想のロータ リーエンジン燃焼を描き,13B 型よりも急速燃焼化を目 標とした。

Rotary EngineReciprocating EngineFig. 3Combustion Chamber at Compression Top

2.2 全域理論空燃比(全域λ=1)の実現

供給する空気とガソリンの重量の実混合比を理論空燃比 (過不足なく反応させるときの混合比)で除した比率を空 気過剰率 λ という。λ=1 では,触媒浄化前の排ガス中の 有害な成分を低減でき,三元触媒での浄化率も向上する。

一方,出力からは λ=1 よりも小さい(燃料が濃い) 側で最大トルク点となるが酸素不足での燃焼となり,排 ガス中の HC や CO が増加し,更に三元触媒での同成分 の浄化率が低下するため,エミッション(排出ガス性能) が悪化してしまう。

また,高負荷運転では排ガス温度が高く,排気系部品 の耐熱性が厳しくなる課題がある。その対策として λ = 1より小さく(燃料を濃く)し,燃料の気化熱で燃焼室 内の熱を奪って,排ガス温度を下げる手法があるが,前 述と同様にエミッション悪化につながる。8C型では,昨 今の厳しいガス規制をクリアし,クリーンな排ガスを実 現するため,全域 λ =1 での運転を目標とした。

2.3 冷間時のエミッション改善(冷間時 λ=1)

排ガス中の有害な成分は,大半が冷間始動時に排出さ れる(Fig. 4)。これは,三元触媒で有害ガスを浄化させ るためには,触媒温度を所定値以上に上げ触媒を活性化 する必要があるが,冷間始動では触媒温度が低く,有害 な成分が浄化できないためである。

この対応として,点火時期を大きく遅角することで排 気温度を高め,触媒に大きな熱量を与え昇温する技術が レシプロエンジンでは一般的である。しかしながら, 13B型においてはプラグ周りの混合気状態の制御が難し く,点火時期を大きく遅角した状態での安定した燃焼の 確保ができなかった。

8C型では、冷間エミッションを改善するために冷間 時も λ=1 混合気を維持しつつ、点火時期を大きく遅角 した状態での安定した燃焼を目標とした。これを実現す るために直接噴射(以降,直噴)による燃料配置と燃焼 室内の流動を組み合わせ、プラグ周辺及び燃焼室内に最 適な混合気状態を作り込んだ。

Fig. 4 Emission Rate during WLTC Mode

3.8C型ロータリーエンジンの主要諸元

13B 型と 8C 型の主要諸元を Table 1 に示す。8C 型で は前述の技術目標を実現するために、大幅な燃焼改善に 挑戦した。13B 型より圧縮比を高め、燃料供給を直噴化 し、Cooled EGR システムも採用した。また、骨格を決 めるディメンション(エンジン寸法)を一新するととも に、発電機専用ユニットとして排気量を最適化した。

Engine		13B (2008MY)	8C	
Way to Use		For Drive	For Power Generation	
Displancement	Displancement cc		830×1	
e: Eccentricity R: Generating Radius b: Width	mm	e=15 R=105 b=80	e=17.5 R=120 b=76	
Compression Ra	atio	10.0:1	11.9:1	
Max. Power	kW (PS)/ rpm	151 (205)/ 7,500 (Std.)	55 (74.8)/ 4,500	
Max. Torque	Nm (kgfm)/ rpm	211 (21.5)/ 5,500	117 (11.9)/ 4,000	
Fuel Injection Sy	ystem	Port Injection	Direct Injection	
Intake Type		Side/3 Port	Side/2 Port	
Exhaust Type		Side/2 Port	Side/2 Port	
Emission System	1	Secondary Air System (ElectricA/P+ ACV) UF-3Way (2 BED)	Direct Catalyst +GPF	
EGR System		_	Cooled EGR	
Ignition System		2 Plug	1 Plug	

Table 1 Specifications for Europe

4. 燃費・エミッションの改善技術

4.1 高圧縮比を実現するノッキング回避技術

高圧縮比化はオットーサイクルの理論式(1)から熱 効率の向上にも寄与し,高膨張比により排ガス温度も低 減するが,ノッキングを誘発させるといった課題がある。 8C型では,燃焼室内の冷却効果のある直噴と冷却し た排ガスを吸気に再循環させる Cooled EGR システムを 採用し,ノッキングを抑制した。Cooled EGR は,ノッ キング回避効果の他,比熱比の向上効果や燃焼温度の低 減による冷却損失や排ガス温度の低減効果があり,更に 部分負荷域ではポンピングロスの低減といった多岐に渡 る燃費向上の効果が得られる。

Theoretical Thermal Efficiency of Otto Cycle

$$\eta_{otto} = 1 - \left(\frac{1}{\varepsilon}\right)^{\kappa - 1} \tag{1}$$

- η : Thermal Efficiency
- ε : Compression Ratio
- κ : Specific Heat Ratio

(1) 直噴化によるノッキング抑制

Fig. 5 に吸気系上流(スロットル直下)噴射と直噴を 織り交ぜた場合と,直噴のみでの点火時期に対する正味 燃料消費率の関係を示す。吸気系上流噴射と直噴の組合 せは,同じ点火時期において未燃燃料が少なく燃費は良 いが,ノッキングの影響で点火時期を進角できない。一 方で,直噴は高圧に燃料噴射することで燃料の気化霧化 を促進し,気化潜熱により燃焼室内を冷却する。これに より,ノッキングを抑制し燃費最良点になる点火時期 (以降,MBT:Minimum Advance for Best Torque)まで 点火時期の進角が可能で燃費が向上する。

また,実用の運転シーンでは燃料性状のばらつき,高 外気環境,EGRを導入できない環境などノッキングに対 して厳しいコンディションが存在するが,直噴にするこ とで幅広い領域でノッキングを回避しつつ MBT にセット 可能となり,実用的な燃費向上にも貢献している。

Fig. 6 に示すのは,燃焼解析におけるノッキング発生 時の温度分布の結果である。リーディング側(以降,L 側)における主燃焼による温度上昇とは別にトレーリン グ側(以降,T側)でノッキング発生による温度上昇が 認められる。これに対して,混合気配置の自由度の高い 直噴では,噴射タイミングを最適化し,Fig.7の燃焼室 断面に示すようにノッキング発生部に濃い混合気を配置 し冷却することで,ノッキングを抑制した。

Fig. 6 Temp. Distribution when Knocking Occurs

Fig. 7 Air-fuel Ratio and Temp. Distribution

(2) Cooled EGR による効果

Fig. 8 に 2300rpm 高負荷域における同一負荷での EGR 率違いでの各性能を示す。EGR を増量することでノッキ ングを回避できるため点火時期を進角できる。また, NOx の排出量の減少から EGR を増量することで熱容量 の大きい CO₂ の増加に伴い燃焼温度が下がっていること が分かる。結果,EGR を増量することで燃費の向上だけ でなく,排ガス温度を低下させた。高負荷運転域では, 排ガス温度が低下することで λ =1 より小さく(燃料を 濃く)する必要がなくなり,全域 λ =1 運転を実現し燃 費とエミッションを両方改善することができた。

(3) 点火プラグ1本化による疑似ノックの抑制

ロータリーエンジンは燃焼させることで共鳴が起こり やすい特徴がある。これは,膨張行程にもかかわらず T 側は燃焼室容積が小さく高周波が減衰しないためであり, ノッキングのような音が発生する場合もある(以降,疑 似ノック)。Fig. 9 に 13B 型における T 側の点火有無での 燃焼室内の圧力を示す。T 側を点火させることで燃焼室 内で圧力脈動が生じ,共鳴が認められる。8C 型では燃 焼の作り込みによる L 側主体の急速燃焼と発電機ユニッ トならではのエンジンの動かし方から T 側の点火プラグ を廃止し,L側の1本のみとした。これにより T 側で点 火することで励起される疑似ノックを抑制し,圧縮比を 高めることで熱効率を向上させた。

4.2 理想のロータリーエンジンの燃焼を実現する技術

ロータリーエンジンの燃焼の特徴としてL側を主体に 混合気が燃え,燃焼は2段燃焼になっている。これは, 点火起点の火炎伝ぱで燃える主燃焼と,主燃焼とは別の T側からのスキッシュ流で促進される燃焼である。その 特徴として,13B型にて1点点火(L側のみ)で燃やし た時の熱発生率をFig.10に示す。熱効率を追求する上で はスキッシュ燃焼を早期化し主燃焼と合わせることで1 段燃焼にすることが重要である。また,1段で燃焼する 上で燃焼速度を速める必要があるが,燃焼室容積の小さ い初期燃焼の時期に急峻な燃焼をさせると壁面への熱伝 達が大きくなる。8C型では,2.1節に記載したロータ リーエンジンの構造的な課題を考慮した理想燃焼を描き, 燃焼を作り込んだ。

(1) 理想燃焼を実現する燃焼室形状

ロータリーエンジンの燃焼は、レシプロエンジンのように点火時期の進角に従い、リニアに急峻にならない。 これはスキッシュ流で促進される燃焼によるもので、熱 発生パターンは点火時期と燃焼室形状から生成される燃 焼室内の流動で制御できる。Fig. 11 に 8C 型の燃焼室形 状と主要部位のねらいをそれぞれ記載する。

Fig. 11 Shape of Combustion Chamber

- a. T 側の容積の最小化(クエンチエリアの最小化)
 - ・2 段燃焼を回避し,排ガス温度の低減
 - ・スキッシュ流動の発生時期と流速を制御(主燃焼を 制御)

Fig. 12 に 8C 型の燃焼室と同燃焼室に追加工で T 側を 拡大した燃焼室における回転数と排ガス温度の関係を示 す。T 側容積を拡大することでスキッシュの流速が低下 し,主燃焼で混合気を燃やしきれず,後燃えにより排ガ ス温度が上がる。

Fig. 12 Exhaust Gas Temp. at Different T End Position

b. キャビティ

- ・後期重心で燃焼させ、空気と燃料の混合時間を確保 し未燃燃料を低減、ローターへの火炎接触も抑制 (冷却損失の低減)
- ・Cooled EGR のような不活性ガスを含んだ混合気は, 反応速度の低下により火炎伝ばが不安定になるため,

燃焼室内に乱流を発生させ燃焼速度を向上し,火炎 伝ぱを安定化

Fig. 13 に 2300rpm 高負荷域の燃焼室内流動の解析結 果を示す。キャビティにより乱流を発生させ放射状に火 炎伝ぱさせ,未燃燃料が低減する。

Fig. 13 Turbulence by Cavity

- c.L側の燃焼室容積の確保と容積変化の抑制
 - ・L側のプラグ1本で燃焼させるため容積をL側に集約
 - ・回転方向の燃焼室容積変化の抑制により燃焼初期の 流動を抑制することで,燃焼室容積の小さい燃焼初 期での燃焼を緩慢にし,壁面への熱伝達を減少
- d. リセス L 端位置の延長
 - ・EGR 導入により進角する点火時期において,プラグ ホール下に容積を設けプラグホール内を掃気

Fig. 14 は 13B型と 8C型の熱発生率を比較したもので, 図中の英字は前述の形状と紐づけるものである。ロータ リーエンジンは構造上,燃焼期間中にT側は圧縮され,L 側は膨張する。従い,燃焼期間中のL側は S/V比(燃焼 室表面積/容積)は減少傾向にあり,冷却損失に有利な 空間となる。8C型ではL側主体に1点点火による1段 の急速燃焼を実現したことで約40%の冷却損失を改善し た。また,等容度や排気損失の改善により熱効率を向上 させるとともに,排ガス温度も低減した。

Fig. 14 Comparison of Heat Release at Setpoint

No.40 (2023)

(2) 壁面への熱伝達の抑制

a. ディメンションの適正化

8C型は,発電機専用ユニットとして排気量を適正化 し,排気量は1ローター830ccを選択した。その中で, Fig. 15 及び Fig. 16 に示すようにディメンションを見直 し,ロングストローク化することで S/V 比を 12.3%小 さくし,壁面への熱伝達を減少した。

Fig. 15 Comparison of Dimension

b. EGR の導入

Fig. 17 に同一点火時期における EGR 量の違いによる 熱発生率を示す。EGR の増量で初期燃焼を緩慢にし,壁 面への熱伝達を抑制した。また、レシプロエンジンでは EGR の増量に伴い燃焼は緩慢になるのが一般的であるが, ロータリーエンジンのスキッシュ形成の特徴を活かし, 熱発生率の最大値を落とさずに等容度の低下を抑制した。 Fig. 18 に示すプラグ周辺の流速のようにロータリーエン ジンのスキッシュはレシプロエンジンより燃焼行程で強 い流れを生成し、L 側の容積が拡大するのと同一方向に 進み火炎伝ぱの速度を高める。

4.3 点火時期の大遅角を実現する混合気配置

燃料が気化霧化し難い冷間始動時に,三元触媒を早期に 温める目的で点火時期を大幅に遅角するためには,プラグ 周りの混合気状態の制御が重要となる。特にロータリーエ ンジンは扁平な燃焼室形状のため混合気の濃度の偏りがで きやすい。ポート噴射であった13B型ではT側にリッチ 混合気が滞留しやすく(プラグ周辺のλ>1),着火性から プラグ周りの混合気を制御するために全体の混合気を濃く (λ<1)する必要があった。8C型ではFig.19に示すよう に直噴で噴射を多段化することで空気層に燃料を噴き分 け,扁平な燃焼室内でも燃料と空気の混合を促進した。こ れにより,点火時期にプラグ周辺及び燃焼室全体のλの分 布を最適に制御することで,点火時期を大幅に遅角しても 出力変動を抑えた安定した燃焼を実現した。

Fig. 19 Air-fuel Ratio in Combustion Chamber

13B 型では, $\lambda = 1$ よりも燃料が濃い状態で燃焼させた 既燃ガスと排気管内に供給した新気を反応させることで、 三元触媒の早期活性化に必要な熱量を確保させる二次エ アシステムを採用してきた。本燃焼技術の確立は、二次 エアシステムの廃止を可能にし、後処理システムを簡素 化したことで発電機ユニットとして車両への搭載性も向 上させた。

5.8C型ロータリーエンジンの性能進化

Fig. 20 にて一例として 3500rpm における出力と正味 燃料消費率を13B型と比較した。8C型は、燃焼の改善 と排気量の適正化により、ユニット燃費がトータルで最 大 25%向上した。また, Fig. 21 に示す 13B型の λ=1 で 運転していた領域(黒枠内)に対して,8C型では排ガ ス温度の低減により全域λ=1 運転を実現し(図で示す と全域緑色となる),大幅に $\lambda = 1$ 域を拡大した。加えて, 冷間の始動時には点火時期の大幅な遅角燃焼を可能とし たことで,最新のエミッション規制である欧州 Euro6d 規 制にも適合した。

Fig. 20 Comparison of Net Fuel Consumption

6. おわりに

MX-30の車体フレーム内に収まるほど小型で高出力を 実現できるロータリーエンジンをシリーズ式プラグイン ハイブリッド用の発電機として活用することは、電動化

技術の可能性を広げる新たな選択肢と考える。レシプロ エンジンに対して構造的な特徴による課題のあるロータ リーエンジンが飛躍的に性能向上し、復活を遂げたのは マツダのアイデンティティーである"飽くなき挑戦"の 精神によるものである。これからも地球温暖化抑制に対 する真の意味での地球環境へ貢献する技術を生み出すこ とで、世界各地のエネルギー事情やお客さまのライフス タイルに応じた商品を提供し続けたい。

■著 者■

中嶋 勝哉

野本 哲也

若林 良努